SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: DISCRETE MATHEMATICS(20HS0836)

Year & Sem: I-MCA & I-Sem.

Course &Branch:MCA

Regulation: R20

<u>UNIT -I</u> MATHEMATICAL LOGIC

Explain the connectives and their truth tables.	[L2][C01]	[6M]
1		
Construct the truth table for the following formula $(P \land \neg Q) \rightarrow R$.	[L1][CO1]	[6M]
Define converse, inverse contra positive with an example.	[L3][CO1]	[6M]
Prove that $(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ is a contradiction.	[L3][CO1]	[6M]
Define NAND, NOR & XOR and give their truth tables.	[L1][CO1]	[6M]
Show that the value of $(P \rightarrow Q) \land (P \rightarrow R)$ is logically equivalent to $P \rightarrow (Q \land R)$.	[L4][CO1]	[6M]
Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$	[L4][CO1]	[6M]
Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R, P$ are inconsistent.	[L4][C01]	[6M]
Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises		
$P \lor Q, Q \to R, P \to M, and \neg M.$	[L1][C01]	[6M]
Prove by indirect method $\neg q, p \rightarrow q$ and $p \lor t$, then t.		[6M]
Define Montonna & Mintonna of D & O and give their truth tobles		
Define Maxternis & Minternis of P & Q and give their truth tables.		
Obtain the disjunctive normal form of $\neg (P \lor Q) \Leftrightarrow (P \land Q)$.		
What is principal disjunctive normal form? Obtain the PDNF of $\neg P \lor Q$.	[L1][CO1]	[6M]
What is principal conjunctive normal form? Obtain the PCNF of		
$(\neg P \to R) \land (Q \leftrightarrow P)$	[L4][C01]	[6M]
Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF.	[L4][CO1]	[6M]
Define Quantifiers and types of Quantifiers with examples.	[L1][CO1]	[6M]
Verify the validity of the following arguments: Lions are dangerous animals, There	[L4][CO1]	[6M]
are lions. Therefore, there are dangerous animals.		
Show that $(\exists x) M(x)$ follows logically from the premises	[L1][CO1]	[6M]
$(\forall x)(H(x) \rightarrow M(x)) and (\exists x)H(x)$		
Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$	[L4][CO1]	[4M]
Explain the procedure for Automatic theorem proving.	[L2][CO1]	[8M]
	Construct the truth table for the following formula $(P \land \neg Q) \rightarrow R$. Define converse, inverse contra positive with an example. Prove that $(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ is a contradiction. Define NAND, NOR & XOR and give their truth tables. Show that the value of $(P \rightarrow Q) \land (P \rightarrow R)$ is logically equivalent to $P \rightarrow (Q \land R)$. Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R, P$ are inconsistent. Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow M, and \neg M$. Prove by indirect method $\neg q, p \rightarrow qand p \lor t, thent$. Define Maxterms & Minterms of P & Q and give their truth tables. Obtain the disjunctive normal form of $-(P \lor Q) \Leftrightarrow (P \land Q)$. What is principal disjunctive normal form? Obtain the PDNF of $\neg P \lor Q$. What is principal conjunctive normal form? Obtain the PCNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF. Define Quantifiers and types of Quantifiers with examples. Verify the validity of the following arguments: Lions are dangerous animals, There are lions. Therefore, there are dangerous animals. Show that $(\exists x) M(x)$ follows logically from the premises $(\forall x)(H(x) \rightarrow M(x)) and (\exists x)H(x)$ Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$ Explain the procedure for Automatic theorem proving.	Construct the truth table for the following formula $(P \land \neg Q) \rightarrow R$.[L1][C01]Define converse, inverse contra positive with an example.[L3][C01]Prove that $(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ is a contradiction.[L3][C01]Define NAND, NOR & XOR and give their truth tables.[L1][C01]Show that the value of $(P \rightarrow Q) \land (P \rightarrow R)$ is logically equivalent to $P \rightarrow (Q \land R)$.[L4][C01]Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ [L4][C01]Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R, P$ are inconsistent.[L4][C01]Show that $R \land (P \lor Q)$ is a valid conclusion from the premises[L1][C01]Pv $Q, Q \rightarrow R, P \rightarrow M, and \neg M$.[L1][C01]Prove by indirect method $\neg q, p \rightarrow q$ and $p \lor t$, thent.[L1][C01]Obtain the disjunctive normal form of $-(P \lor Q) \Leftrightarrow (P \land Q)$.[L4][C01]Obtain the disjunctive normal form? Obtain the PDNF of $\neg P \lor Q$.[L4][C01]What is principal disjunctive normal form? Obtain the PCNF of $(\neg P \land R) \land (Q \leftrightarrow P)$ [L4][C01]Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF.[L4][C01]Define Quantifiers and types of Quantifiers with examples.[L4][C01]Verify the validity of the following arguments: Lions are dangerous animals, There are lions. Therefore, there are dangerous animals.[L4][C01]Show that $(\exists x) M(x)$ follows logically from the premises[L4][C01] $(\forall x)(H(x) \rightarrow M(x))$ and $(\exists x)H(x)$ [L4][C01]Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$ [L4][C01]Explain the procedure for Automatic theorem proving.[L4][C01]

<u>UNIT –II</u> RELATIONS, FUNCTIONS & ALGEBRAIC STRUCTURES

1 . a)	Define Relation? Write the properties of relations.	[L1][CO2]	[6M]
b)	Let $A=\{0,1,2,3,4\}$. Show that the relation		
	$R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$ is an equivalence relation.	[L4][CO2]	[6M]
2. a)	Define an equivalence relation? If R be a relation in the set of integers Z defined	[L1][CO2]	[6M]
	by $R = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{Z}, (x - y) \text{ is divisible by 6}\}$. Then prove that R is an		
1 \	equivalence relation.		
b)	Draw the Hasse diagram representing the positive divisors of 36.	[L1][CO2]	[6M]
3. a)	Let $A = \{1,2,3,4\}$ and let R be the relation on A defined by xRy if and only if "x	[L1][CO2]	[6M]
	divides y'' , written x/y . i.) Write down R as a set of ordered pairs. ii) Draw the		
1-)	diagraph of R. Let A_{1} (1.2.2.4 (1.2) On A_{2} define the relation P has a Ph if and a shelf a divides h		
D)	Let $A = \{1, 2, 3, 4, 6, 12\}$. On A, define the relation R by aRb if and only if a divides b.		
4	Prove that Ris a partial order on A. Draw the Hasse diagram for this relation. Define transitive closures Let $A = \int [1, 2, 3]$ and $B = \int (1, 2) (2, 3) (3, 1) Find the$	[1,3][CO2]	[12M]
٦.	reflexive symmetric and transitive closures of R using composition of matrix		
	relation of R.		
5. a)	Define a function and write the types of functions	[L1][CO2]	[6M]
Í	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
b)	Find the inverse of the following functions: (i) $f(x) = \frac{1}{\sqrt[5]{7-3x}} (u) f(x) = 4e^{(u/x)}$	[L1][CO2]	[6M]
6. a)	Let $f(x) = x + 3$, $g(x) = x - 4$ and $h(x) = 5x$ are functions from $R \rightarrow R$ where R is	[L1][CO2]	[6M]
	the set of real numbers. Find $f \circ (g \circ h)$ and $(f \circ g) \circ h$.		
b)	Let f and g be functions from R to R defined by	[L1][CO2]	[6M]
	$f(x) = ax + b \text{ and } g(x) = 1 - x + x^2$. If $(g \circ f)(x) = 9x^2 - 9x + 3$, determine a, b.		
7. a)	If $f: R \to R$ such that $f(x) = 2x + 1$ and $g: R \to R$ such that $g(x) = \frac{x}{2}$ then verify	[L4][CO2]	[6M]
	$f^{-1} = f^{-1} = f^{-1} = f^{-1}$		
1 \	that $(gof) = f \circ og^{-1}$.	[L3][CO2]	[6M]
b)	Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.		
8. a)	Show that the set of all positive rational numbers forms an abelian group under the (1)		
	composition defined by $a * b = \frac{(ab)}{2}$.	[L4][CO2]	[6M]
b)	Show that $G = \{1, 2, 3, 4, 5\}$ is not a group under addition & multiplication modulo 6.	[L4][CO2]	[6M]
9. a)	Prove that the set Z of all integers with binary operation $a * b = a + b + 1, \forall a, b \in Z$.		
	is an abelian group.	[L4][CO2]	[6M]
b)	The necessary and sufficient condition for a non-empty subset H of a group (G,*)		
	to be a subgroup is $a \in H, b \in H \Longrightarrow a * b^{-1} \in H$.	[L4][CO2]	[6M]
10. a)	Define abelian group, homomorphism and isomorphism.	[L1][CO2]	[6M]
b)	For a group G, prove that the function $f: G \to G$ defined by $f(a) = a^{-1}$ is an		
	isomorphism if and only if G is abelian.	[L4][CO2]	[6M]
		1	1

<u>UNIT –III</u> ELEMENTARY COMBINATORICS

1. a)	In how many ways 4 white balls and 6 black balls be arranged in a row so that no two		
• `	white balls are together.	[L1][CO3]	[6M]
b)	i. How many 3-digits numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9?	II 11/0021	
	11. How many can be formed if no repetitions are allowed?		[6M]
2. a)	Find the number of ways in which the letters of the word ARRANGEMENT can be		[6][1]
1-)	arranged so that two R's and two A's do not occur together.	[] 1][[] 02]	
D)	(i) If boys and girls sit alternate how many ways are there		
3 a)	A group of 8 scientists is composed of 5 psychologists and 3 sociologists		[6M]
J • u)	i) In how many ways can a committee of 5 be formed? ii) In how many ways can a	[L1][CO3]	
	committee of 5 be formed that has 3 psychologists and 2 sociologists?		
b)	The question paper of mathematics contains two questions divided into two groups of 5	[L1][CO3]	[6M]
	questions each. In how many ways can an examine answer six questions taking atleast		
	two questions from each group.		
4. a)	Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways can it		[6M]
	be formed if at least one woman is to be included?		
b)	In how many ways can the letters of the word COMPUTER be arranged? How many of	[L1][CO3]	[6M]
	them begin with C and end with R? How many of them do not begin with C but end	[[][005]	
	with R?		
5. a)	Find the number of arrangements of the letters in the word i) ACCOUNTANT		[6M]
,	ii) CALCULUS iii) DIFFERENTIATION.		[]
b)	Find the number of arrangements of the letters in TALLAHASSEE which have no		
0)	adjacent A's.	[L1][CO3]	[6M]
6. a)	Find the co-efficient of $x^9 y^3$ in the expansion $(2x-3y)^{12}$	[L1][CO3]	[6M]
b)	Find the coefficient of $(i)xyz^2$ in $(2x - y - z)^4(ii)xyz^5$ in $(x + y + z)^7$	[L1][CO3]	[6M]
7. a)	Find the number of non-negative integer solutions of the equality $x_1 + x_2 + x_3 + x_4 + \dots + x_6 < 10$	[I_1][CO3]	[6M]
b)	Find the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 30$ where		
	r > 2 r > 3 r > 4 r > 2 r > 0		[6M]
9 a)	$x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 2, x_5 = 0.$		
o. a) b)	If $x > 2$, $y > 0$, $z > 0$, then find the number of solutions of $x + y + z + w - 21$. Show that there must be at least 00 were to shoose 6 numbers from 1 to 15 so that all	[L1][CO3]	
0)	the choices have the same sum	[L1][CO3]	[6M]
0 a)	Find the number of positive integers less than or equal to 2076 and divisible by 3 or 4		[6M]
\mathbf{p} . \mathbf{a}	Applying pigeon hole principle show that of any 14 integers are selected from the set		
0)	$S = \{1, 2, 3,, 25\}$ there are at least two whose sum is 26. Also write a statement that		
	generalizes this result.	[L4][CO3]	[6M]
10. a	Find the minimum number of students in a class to be sure that 4 out of them are born		
	on the same month.		
b)	In a sample of 100 logic chips, 23 have a defect D_1 ,26 have a defect D_2 , 30 have a	[L3][CO3]	[6M]
	defect D_3 ,7 have defects D_1 and D_2 , 8 have defects D_1 and D_3 ,10 have defects D_2 and		
	D_3 and 3 have all the three defects. Find the number of chips having (i) at least one	[L1][CO3]	[6M]
	defect (ii) no defect		

<u>UNIT –IV</u> RECURRENCE RELATION

1. a)	Find the generating function for the sequence 1,1,1,3,1,1,	[L1][CO4]	[6M]
b)	Find the generating function for the sequence 0, 2, 6, 12, 20, 30, 42	[L5][CO4]	[6M]
2. a)	Find the sequence generated by the following generating functions	[L1][CO4]	[6M]
	(i) $(2x-3)^3$ (ii) $\frac{x^4}{1-x}$		
b)	Determine the sequence generated by (i) $f(x) = 2e^x + 3x^2$ (ii) $\frac{1}{1-x} + 2x^3$.	[L1][CO4]	[6M]
3. a)	Find the sequence generated by the function $f(x) = (3 + x)^3$.	[L6][CO4]	[6M]
b)	Find the generating function of $(n-1)^2$.	[L6][CO4]	[6M]
4. a)	Find the generating function of $n^2 - 2$.	[L6][CO4]	[6M]
b)	Find the coefficient of x^n in the function $(x^2 + x^3 + x^4 +)^4$.	[L6][CO4]	[6M]
5. a)	Find the coefficient of x^{18} in the expansion of	[L6][CO4]	[6M]
b)	$(x + x^{2} + x^{3} + x^{4} + x^{5})(x^{2} + x^{3} + x^{4} +)^{5}$. Find the coefficient of x^{20} in the expansion of $(x^{3} + x^{4} + x^{5} +)^{5}$.	[L6][CO4]	[6M]
6.a)	Show that $\{a_n\}$ is a solution of recurrence relation $a_n = -3a_{n-1} + 4a_{n-2}$, if $a_n = 1$	[L6][CO4]	[6M]
b)	Solve $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2, a_1 = 7$	[L6][CO4]	[6M]
7.	Solve the recurrence relation $a_n + 4a_{n-1} + 4a_{n-2} = 8$ for $n \ge 2$, and $a_0 = 1, a_1 = 2$.	[L6][CO4]	[12M]
8. a)	Solve the recurrence relation $a_{n+2} + 3a_{n+1} + 2a_n = 3^n$ for $n \ge 0$ given $a_0 = 0, a_1 = 1$.	[L6][CO4]	[8M]
b)	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$, for $n \ge 2$, given that $a_0 = -1$ and $a_1 = 8$.	[L6][CO4]	[4M]
9.	Find a generating function for the recurrence relation $a_{12} - 3a_{11} + 2a_{22} = 0$, $n \ge 0$	[L6][CO4]	[12M]
	and $a_0 = 1, a_1 = 6$. Hence solve the relation.		
10.	Find a generating function for the recurrence relation $a_{n+2} - 5a_{n+1} + 6a_n = 2$, $n \ge 0$	[L6][CO4]	[12M]
	and $a_0 = 3, a_1 = 7$. Hence solve the relation.		

<u>UNIT –V</u> GRAPH THEORY

1. a)	Show that the maximum number of edges in a simple graph with n vertices		
	n(n-1)	[L5][CO5]	[6M]
•	$\frac{15}{2}$.		
b)	How many vertices will the graph contains 6 edges and all vertices of degree 3.	[L4][CO5]	[6M]
2. a)	How many edges does a graph have if it has vertices of degree 4, 3, 3, 2, 2? Draw	[L1][CO5]	[6M]
1 \	such a graph.	[L2][CO5]	[6M]
b)	If G is non-directed graph with 12 edges, Suppose that G has 6 vertices of degree 3 and the rest have degree less than 2 Determine the minimum number of vertices		
3 a)	Determine the number of edges in (i) Complete graph K (ii) Complete bipartite graph K	[1,2][CO5]	[6M]
5. a)	(iii) Cycle graph C_n (iv) Path graph P_n		
b)	Explain about complete graph and Bipartite graph with an example.	[L1][CO5]	[6M]
(4 a)	Define (i) Planar and non-planar graph (ii) Regular graph (iii)Rooted tree	[L2][C05]	[6M]
	Define the following graph with one suitable example for each graphs	[L2][C03]	[6M]
- /	(i) sub graph (ii) induced sub graph (iii) spanning sub graph	[L1][CO5]	[011]
5. a)	Explain graph coloring and chromatic number give an example.	[L1][CO5]	[6M]
b)	Define (i)Isomorphic graph (ii) Multiple graph (iii)spanning tree.	[L1][CO5]	[6M]
6.a)	Show that the two graphs shown in figure are isomorphic?		
ŕ		[L1][CO5]	[6M]
	•1 a ••b		
	$G_1 2 \checkmark \qquad \qquad$		
	d C		
b)	Define Euler circuit, Hamilton cycle, Wheel graph ?	[L1][CO5]	[6M]
,			
7. a)	Let G be a 4 – Regular connected planar graph having 16 edges. Find the number of		
	regions of G.	[L1][CO5]	[6M]
b)	Draw the graph represented by given Adjacency matrix		
	(1) 0 3 1 1 (11) 0 1 0 1	[I_1][CO5]	[6M]
8. a)	Show that in any graph the number of odd degree vertices is even	[[4][C05]	[6M]
b)	Write difference between Hamiltonian graphs and Euler graphs.	[L1][C05]	[6M]
9.	Apply DFS and find the spanning tree of the following graph	[L2][CO5]	[12M]
	a b		
	go <u> </u>		
	h /		
10		H 43500	-
10.a)	Explain the algorithm for Breadth- First Search (BFS) for finding a spanning tree	[L1][CO5]	[6M]
b)	Ior the graph. Evaluation the algorithm for Donth Eirst Secret (DES) for finding a graphing tree for		[6M]
	the graph		נטזענן
i i	une graph.		